五年级数学上册《小数除法》教案优质(通用30篇)
一、指导思想
新修订的课程标准的基本出发点是促进学生全面、持续、和谐的发展。不仅考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、班级学生情况分析
五年级两个班共有学生86人,大部分学生学习数学的兴趣浓厚,也有上进心,但个别同学由于接受知识的能力的差异有厌学情绪,所以学习态度还需不断端正。有少部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
三、教材分析
教材内容分析:
本册教材内容包括:小数乘法、位置、小数除法、可能性、掷一掷、简易方程、多边形的面积、数学广角植树问题、补充内容(观察物体、图形的运动、鸡兔同笼、数字编码)。
(一)数与代数方面
本册教材安排了小数乘法,小数除法和简易方程。小数乘法和除法是在学生掌握了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程中有用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
(二)在空间与图形方面
安排了位置,观察物体和多边形的面积三个单元。在已有知识和经验的基础上,探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
(三)在统计与概率方面
本册教材让学生学习有关可能性的知识。通过操作与实验,让学生体验事件发生的可能性以及可能性的大小。
(四)在用数学解决问题方面
教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
(五)综合实践方面
本册教材还安排了一个数学综合应用的实践活动,让学生通过小组合作的探索活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养数学意识和实践能力。
四、教学重点
小数乘法、除法,简易方程,多边形的面积,可能性与植树问题等是本册教材的重点教学内容。
五、教学难点
理解小数乘、除法的算理,理解用字母表示数的意义,理解用字母表示数的公式,理解方程的.意义及等式的基本性质,根据题意分析数量间的相等关系,理解多边行面积公式的推导过程。
六、教学目标
1、使学生在理解小数的意义和性质的基础上。比较熟练地进行小数乘法和小数除法的笔算和简算。
2、使学生学会用字母表示数,表示常见的数量关系,初步理解方程的含义,会解简易方程。
3、探索并掌握平行四边形、三角形和梯形面积的计算公式,会计算它们的面积。
4、能辨认物体的位置,找到相应的数对,并能用数对表示物体的位置。
五年级数学上册《小数除法》教案优质 篇16
教学目标:
1、了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系,
2、能根据不同情况选择正确方法解决问题。
3、通过摆一摆、画一画、比一比等方法体会在一条直线上植树三种基本情况的联系。
4、在解决实际问题中感受数学的价值。
教学重点:能阐述不同情况下点数与间隔数的关系,
教学难点:能根据不同情况选择正确方法解决问题。
教学准备:图片、小棒、习题
教学过程:
一、初步感知点与间隔数
同学们已经四年级了,在学校里上操,上体育课都少不了要排队,老师要请三位同学到前面按照老师的要求排队。(请三位同学到前面来)
师:面向老师排成一路纵队。相邻两位同学之间间隔1米。
师:排得不错。这路纵队长几米?你是怎么知道的? (生回答)
师讲解:这个同学到最后一个同学的距离叫做队伍的全长(总长);相邻两个同学之间的距离叫做间隔(板书:间隔、强调间的读音是四声);现在3名同学站队有几个间隔;(2个)这三名同学也可以当成三个点(板书:点)。
老师把这几个同学排队的情况抽象成平面图(师板书平面图),你能看懂吗?这几个点表示什么?点与点之间的是间隔。
师:间隔可以是人与人之间的距离,也可以是人与物,物与物之间的距离……
师:请同学们再数一数在平面图上有几个点?几个间隔呢?想象一下,四个同学排成一队会有几个点,几个间隔?试着像老师这样用线段图来表示。(生试画、展示)
师:如果是5名同学、6名同学以至于更多的同学站队会有几个点,几个间隔?请同学们用桌上的小棒来演示验证一下,摆的越多越好。(老师叫停)
师:数一数,5个同学是几个点,几个间隔?6个呢……
师:在刚才同学的站队及你的整个摆小棒的过程中你有什么发现?(排队人数比间隔多1,间隔比人数少1)
师:请同学们把学具整理一下。
师:在我们教室里也有这样点与间隔的现象存在,请同学们用你智慧的眼睛找一找。
生1:四个桌子间有4个点,3个间隔。
生2:三个窗户间有3个点,2个间隔。
生3:棚上有两盏灯,所以就有2个点,1个间隔。
师:大家都抬头来仔细观察、并且认真数一下,两盏灯之间到底有几个点,几个间隔?(2个点、1个间隔)
师:你认为什么是间隔?(灯与灯之间的距离就是间隔)
师:间隔就是距离,它可以是人与人之间的距离,也可以是人与物,物与物之间的距离……灯与灯之间有距离吗?(有)这就是间隔。灯与墙之间有距离吗?(有)那也是间隔。现在请同学们再数一数现在你看到的是几个点,几个间隔?(2个点、3个间隔)
二、引题。
在现实生活中,我们常常会遇到像同学们站队这样与点和间隔有关的问题,数学家把这类问题统称为植树问题,这节课我们就一起研究和解决一些简单的植树问题。(板书:植树问题)
三、植树问题与同学站队建立联系,找出两端都植树棵数与间隔数的关系
(1)例1 :同学们在全长100米的小路一边植树,每隔20米栽一棵(两端要栽)。一共需要栽多少棵树苗?
师:请同学们默读两遍,通过阅读你获得了哪些数学信息?(生说信息)
师:这里说的种树和刚才的排队活动有什么联系?(同学按自己的理解讲解)
教师讲解:这条小路的长100米相当于排队的队伍的总长;每两棵树之间的距离20米相当于相邻两名同学之间的距离;种树的棵数相当于排队的人数。想一想,在这一题中,什么相当于点?什么相当于间隔?
师:请同学们用你桌上的小棒摆一摆,看100米的小路上到底可以栽多少棵树苗?然后将你摆的抽象成平面图在练习本上画出来。(生试摆、试画)(找一生上黑板画线段图,生说是如何想的,可能出现的答案:我是这样表示的。先画一条长的线段表示这条小路,再画出第一个间隔,标出这个间隔的长是20米。)
师:我们可以直接算出什么?列式 100÷20=5
师: 这个5表示什么呢?(有5个间隔,这条小路可以分成20米长的5段)所以5的单位是什么?(个) 完成这道题了吗?(没有)为什么?请同学们在练习本上写出算式。
师:谁来说一说这一题的解题过程。
师:通过摆一摆和画线段图,你发现棵数与间隔数之间的规律吗?(生答:棵数总比间隔数多1)能用一个公式的形式表示它们的关系吗?(板书:棵数=间隔数+1)
师:什么情况下棵数比间隔数多1呢?(师在黑板上画一个两端都不植树的平面图)引导学生得出在两端都植树的情况下。(板书:两端都植树)
过渡小结:刚才,同学们把植树和排队活动联系起来,发现了当两端植树时 棵数=间隔数+1。是不是说只有植树才是植树问题呢?(不是的)对,在我们熟悉的生活中也有植树问题,回忆一下生活中哪些现象属于植树问题。(生说现象)