五年级数学上册《小数除法》教案优质(通用30篇)
(2)“因数与倍数”:这部分内容不仅知识点较多,而且存在很多容易混淆的概念和方法,历来是小学数学的教学难点之一,为了帮助学生正确理解知识、形成合理的认知结构,教材注意以学生熟悉的整数乘除法为基础,突出知识发生发展的基本线索,突出相关知识和方法的逻辑关联,有序地展开教学内容。
(3)“分数的意义和性质”:主要由两部分组成,第一部分侧重引导学生探索并理解分数的意义,具体包括分数的基本含义、分数与除法的关系、求一个数是另一个数的几分之几、真分数与假分数、把假分数化成整数或带分数、分数与小数的互化等;第二部分侧重引导学生探索并掌握分数的基本性质,具体包括分数的基本性质、约分、通分和分数的大小比较等。
(4)“分数加法和减法”:这部分内容主要教学异分母分数加减法,以及分数连加、连减、加减混合式题的计算。考虑到学生在三年级就已经学习过简单的同分母分数的加减法,在本册教材的第四单元亦已学习过分数的意义和性质,所以本单元教材十分注意为学生留出充分的自主探索的空间。
(5)“解决问题的策略”:删除用“倒推“策略解决问题,教学用“转化”的策略解决问题。转化是一种重要而又最为常见的解决问题的策略。学生在此前的各类数学活动中曾经多次运用这一策略解决问题,具有较为丰富的经验和体会。考虑到上述具体学情,教材在安排这一内容时,一方面注意引导学生联系已有的知识经验,感受转化策略的意义和价值,尝试从策略角度重建相应的认知结构,体会转化的策略能够使问题化繁为简、化难为易、化生疏为熟悉、化未知为已知,从而使原有的相对模糊的认识趋于清晰和明朗,使原本相对具体的方法和技巧更具一般意义。
2、“图形与几何”领域
“图形与几何”领域安排了一个单元,即第六单元“圆”。
本单元教学圆的知识,主要有圆的形状特征、圆的周长与面积。作为一种最常见也是最基本的曲线图形,圆的内涵是十分丰富的。学生对圆的特征的认识不能仅仅局限于圆的半径、直径以及半径和直径的关系等较为直观的层面,还应在不同形式的活动中形成更多、更有价值的感悟。
3、“统计与概率”领域
“统计与概率”领域安排了1个单元,即第二单元“折线统计图”。
折线统计图是呈现和描述数据的方法之一,而呈现和描述数据仅是统计活动中的一个环节。学生认识折线统计图的目的,不仅仅在于掌握一些知识和技能,而更多地在于学会根据问题背景和数据特点选择合适的.呈现方式以及通过不同角度的数据分析获得更多有意义的结论,从而不断加深对统计活动过程的理解,逐步增强数据分析观念。
4、“综合与实践”领域
“综合与实践”领域一共安排了2次活动,包括:“蒜叶的生长”和“球的反弹高度”。
《蒜叶的生长》是结合“折线统计图”的认识重新设计的,其侧重引导学生围绕蒜叶及其根须的生长情况,经历数据的收集、整理、描述和分析过程,进一步感受数据对于发现和提出问题、分析和解决问题的意义。
《球的反弹高度》由原实验教材中同名的实践与综合应用改造而成,其一方面强化了提出问题、实验探究、获得结论的活动线索,引导学生在问题的引领下积极参与活动过程,主动开展实验探究;另一方面则突出了“回顾反思”的活动环节,着力引导学生从不同层面和角度总结活动过程中的收获和体会,帮助他们积累活动经验、提升认识水平。
五年级数学上册《小数除法》教案优质 篇30
第一课时:用字母表示数(一)
教学内容:
教材P44-P46例1-例3 做一做,练习十第1-3题
教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写。
教学重点:
理解用字母表示数的意义和作用
教学难点:
能正确进行乘号的简写,略写。
教学准备:
投影仪
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调…….
二、 新授:
1、学习用字母表示运算定律和性质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、 b或 c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示………….”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
减法的性质:a-b-c=a-(b+c)
除法的性质:a÷b÷c=a÷(bc)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
ab=ba (ab)c=a(bc)
可以写成:a·b=b·a或ab=ba (a·b)·c=a·(b·c)或(ab) c=a(bc)
(a+b)c=ac+bc
可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
师强调:a 表示两个a相乘,读作a的平方;
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
mm 0.10.1 a6 3n χ8 ac
教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题 先独立解答后,再集体评议。
四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)
板书: 用字母表示数(一)
乘法交换律:ab=ba S=aa C=a4
可以写成: a·b=b·a或ab=ba S =a2 C=4a