az9范文网

您现在的位置是:首页 > 工作范文 > 工作计划范文

工作计划范文

六年级下册数学工作计划(精选30篇)

2024-03-13 08:35:32工作计划范文打印
六年级下册数学工作计划(精选30篇) 一、学生基本情况本学期本人所任教的是六年级(3)、(4)两个班的数学,共有学生99人。从新课程的角度来讲,班级人数比较多,可从一年级一直到六年级,都是自己带过来的,所以对学生的情况了解比较充足,大部分学生对数学学习的积极性比....

  5、体验事件发生的可能性与公平性,会求一些简单事件发生可能性的概率,并根据可能性的知识,设计游戏方案。

  (十)综合应用

  1、综合应用所学知识解决相关的实际问题,比称物体(等量代换)、打电话、植树问题、抽屉原理,鸡兔同笼等,感受数学知识间的相互联系,体会数学的作用。

  2、获得一些运用数学知识解决实际问题的活动经验和方法。

  复习重点、难点、关键

  重点:重视基础知识的复习,注意知识间的联系,使概念、法则和性质系统化、网络化。

  难点:在基础知识复习中,注意培养学生的能力,尤其是综合运用知识解决问题的能力,注重数学与生活的联系。

  关键:在复习过程中,教师要注意启发、引导学生主动的`整理复习。

  具体提高教学的措施

  1、贯彻大纲,重视复习的针对性。

  大纲是复习的依据,教材是复习的蓝本。要领会大纲的精神,把握好教材,找准重点、难点,增强复习的针对性。教师要认真研究大纲,把握教学要求,弄清重点和难点,做到有的放矢。要引导学生反复阅读课本,弄清重点章节,以及每一章节的复习重点。要根据平时作业情况和各单元测试情况,弄清学生学习中的难点、疑点所在。计划先根据教材的安排进行复习;再分概念、计算、应用题三大块进行训练;最后适当进行综合训练,切实保证复习效果。

  2、梳理拓展,强化复习的系统性。

  复习课的一个重要特点就是在系统原理的指导下,引导学生对所学的知识进行系统的整理,把分散的知识综合成一个整体,使之形成一个较完整的知识体系,从而提高学生对知识的掌握水平。如分数的意义和性质一章,可以整理成表,使学生对于本章内容从分数的意义到分数与除法的关系、分数的大小比较,分数的分类与互化,以及分数的基本性质与应用,有一个系统的了解,有利于知识的系统化和对其内在联系的把握。再如,复习分数的基本性质,把除法的商不变的性质、比的基本性质与之结合起来,使学生能够融会贯通。再如,四则运算的法则,通过复习,使学生弄清楚它们的共性与不同,从而牢固掌握计算法则,正确进行计算,做到梳理——训练——拓展有序发展,真正提高复习的效果。

  3、倡导解题方法多样化,提高解题的灵活性。

  解题方法多样化可以培养学生分析问题的能力,灵活解题的能力。不同的分析思路,列式不同,结果相同,收到殊途同归的效果,同时也给其他的学生以启迪,开阔解题思路。复习时,要引导学生从不同的角度去思考,引导学生对各类习题进行归类,这样才能使所学的知识融会贯通,提高解题的灵活性。

  4、有的放矢,挖掘创新。

  数学复习不是机械的重复。复习题的设计不宜搞拉网式,什么都讲,什么都练是复习的大忌。复习一定要做到精要,有目的、有重点,要让学生在练习中完成对所学知识的归纳、概括。题目的设计要新颖,具有开放性、创新性,能多角度、多方位地调动学生的能动性,让他们多思考,使思维得到充分发展,学到更多的解题技能。

  5、教师事先对复习内容有全盘的把握。

  要制定切实可行的复习计划,精心备好复习课,课前充分准备,努力提高课堂教学效益。教师要能摸清学生知识掌握现状,对于薄弱环节要进行强化训练,并注意训练形式的多样化,合理安排分类练习和综合练习。在基础知识扎实时,适当的将知识向纵深拓展,培养学生综合运用知识的能力。

六年级下册数学工作计划 篇17

  一、教材分析:

  本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

  在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

  “鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

  二、三维目标:

  1、知识与技能:

  引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

  2、过程与方法:

  (1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等

  活动的学习方法,渗透数形结合的思想。

  (2)学会与人合作,并能与人交流思维过程和结果。

  3、情感态度与价值观:

  (1)积极参与探索活动,体验数学活动充满着探索与创造。

  (2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体

  验学数学、用数学的乐趣。

  (3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

  (4)理解知识的产生过程,受到历史唯物注意的教育。

  三、教学重点:

  应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。

  四、教学难点:

  理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

  五、教学措施:

  1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

  2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

  3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

  六、课时安排:3课时

  鸽巢问题-------------------1课时

  “鸽巢问题”的具体应用------1课时

  练习课---------------------1课时

六年级下册数学工作计划 篇18

  一、指导思想

  小学毕业总复习是小学数学教学的重要内容,是学生全面而系统地巩固整个小学阶段所学的数学基础知识和基本技能,提高知识的掌握和应用水平,进一步发展数学能力的重要部分,作为一种引导小学生对旧知识进行再学习的过程,它应是一个有目的、有计划的学习活动过程。因此,以全面提高小学生的数学素质为目标,培养出合格的小学生为服务宗旨,结合学生的实际情况,必须制定出切实可行的计划,以增强复习的针对性,提高复习效率。

文章评论