动漫实习生自我鉴定(通用33篇)
播臂支柱式起落架有两种形式,一是将减震器与受力支柱分开;另一种是将减震器和支柱合而为一,在减震器下方用万向铰与摇臂相连,减震支柱的外筒上则固定有旋转臂下部接头,这种形式宜在前轮上使用,以便于前轮转弯.摇臂支柱式起落架的基本受力构件比前述的简单支柱式多了一个摇臂,但不再需要扭力臂。
三、多轮小车式起落架
(1)多轮小车式起落架为解决上述问题,将连接前,后轮组的车架作成与支柱铰接,以平衡前、后轮组的载荷。为了避免车架变成可绕铰接轴任意旋转的不稳定的活动机构,须加装一个缓冲器(图8.20(b))。它一般是一个油气式减震器,起缓冲、减震、调匀各轮组受力的作用。着陆刹车时地面摩擦力引起的力矩会使车架绕铰接接头逆时针方向旋转,致使前轮组加载,后轮组卸载。为此,须加装刹车平衡机构.图
8.21所示为某种刹车平衡机构的受力分析和工作原理。该刹车平衡机构由平行于车架2—3 的拉杆4—5(它与前、后轮组的刹车盘连接)、摇臂4—6 和上刹车拉杆6—8(它与支柱及前刹车盘相连)等组成。刹车盘与轮轴通过花键刚性连接,轮轴穿过2,3点与车架铰接。当刹车时,摩擦力矩通过后轮刹车机构传到杆4—5 上,再往前传至摇臂4—6 和拉杆6—8 上。
(2)“爵克”式主起落架是另一种使多轮式起落架平均受力的设计方案,其双轮或多轮为前后串列,它是短距起落运输机起落架的一项重大改进。它的一般原理是把两个轮子单独装在两个摇臂上,然后串列地铰接在减震支柱的两端,减震支柱水平安装井与机身轴线平行.这种形式很适合于上单翼飞机,它通常由一个减震器和与它弹性连接的两个摇臂组成。它结构简单,能使飞机在凹凸不平的低质跑道、甚至草地上平稳地滑行。滑跑时,串列布置的两个机轮连接在同一个减震器上,能使飞机在凹凸不平的道面上滑跑时所产生的振动力在起落架上被 平衡掉,而不致传递到机身上(图
8.22)。这种形式的另一优点是可使机轮半收缩,致使机身的高度与地面平行地降低,或根据需要向前或向后倾斜以便于装卸货物。它除了用于布雷盖—941飞机上之外,还用于C-160"协同”式飞机的主起落架(4 个轮子)和安—22(重2500主起落架上(有6 个机轮成对直排),此时起落架的具体构造会有所不同。B777采用的就是这种机轮。
3.2起落架的设计
3.2.1对起落装置的设计要求
飞机对起落装置设计的基本要求是:在飞机起飞、着陆过程中能吸收一定的能量,包括垂直和水平方向的;在滑行、离地和接地时飞机的任何部分不能触及地面;不允许发生不稳定现象,特别是在最大刹车、侧风着陆和高速滑行时;起落架特性必须适合于准备使用机场的承载能力。
3.2.2起落架的布置
起落架的布置形式,主要是后三点式(如图3-10所示)和前三点式(如图3-11所示)。
后三点式,主支点在飞机重心(质心)之前,在低速飞机上采用较多;后三点式起落架固有的缺点就是在着陆时操纵困难,并有可能产生向前倒立的危险并且后三点起落架的飞机,起飞和着陆滑跑时不稳定。
前三点式广泛用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易,具有滑跑稳定性;由于机身处于接近水平的位置,故飞行员座舱视界的要求较容易满足;着陆滑跑时,可以使用较强烈的刹车,有利于缩短滑跑距离;缺点在于前轮可能出现自激振荡现象,即前轮“摆振”,所以需要加减摆器。
起落架的形式和轮数和飞机重量也有典型关系。双前轮使用普遍,尤其是对采用弹射起飞的舰载机。
重量大约在 50,000lb 以下时,尽管就万一有一个轮胎瘪胎情况下的安全性而言,在每个主轮支柱上采用双轮好些,但通常每个支柱还是采用单主轮
重量 50,000 ~ 150,000 lb(甚至到250,000lb),每个支柱一般都使用双轮
重量 200,000~ 400,000 lb ,通常采用 4 轮的小车式
重量大于400,000 lb ,采用四个轮轴架,每一轮轴架带4个或6个机轮,以便沿横向分散飞机的总载荷。
起落架原则总体方案设计阶段布置起落架要遵从几个重要的原则,控制机轮与飞机重心的相对位置和起落架的高度;由此引起的擦地角、防倒立角要满足飞机在起飞抬前轮到主轮离地和着陆接地时应只能有机轮接触地面,且在跑道与飞机的所有其他
部分之间应有适当的间隙;(“其他部分”包括后机身、平尾翼尖、机翼翼尖、螺旋桨叶尖或发动机吊舱等)。
在起落架布置时要参考几个重要的参数;擦地角、防倒立角、防侧翻角、前主轮距、主轮距、停机角。
擦地角γ:对应于飞机尾部刚刚触地,起落架支柱全伸长,轮胎不压缩时,机头抬起最高时的姿态;“机头抬起”:飞机迎角为α,由于地面效应使机翼升力达到最大可用值的90%时;对大多数类型的飞机,这个范围约为10~15度。
防倒立角β;主轮在停机状态接地点位置到重心的连线偏离垂线的夹角;为防止飞机擦地,防倒立角应大于擦地角,且不小于15 °
防侧翻角θ :飞机滑行时急剧转弯侧翻趋势的量度;根据我国的和美国的通用规范规定,对陆基飞机角不应大于63°,对舰载飞机角不应大于54°。
前、主轮距B:前轮承受飞机重量的最佳百分数大约为飞机重量的8%~15%;B(0.3~0.4) L机身;要与防倒立角β相协调。
主轮距:依据飞机起飞、着陆以及在地面滑行稳定性,越宽越好 ;主要决定于飞机重心距地面的高度;可通过算出的防侧翻角进行检查。
停机角Ψ;飞机的水平基准线与跑道平面之间的夹角;可增大起飞滑跑时的迎角:
机务维修岗位实习报告76_机务维修
α起飞 =ψ +α安装 ;对前三点式通常取 0°~4 °。
3.2.3轮胎参数的初步选择
机轮的选择上,也是非常严格的,“机轮”是装有橡胶轮胎的圆形金属物体。机轮内侧有“刹车”,以增加滚转摩擦力的方式使飞机减速。“机轮”常用于表示机轮、刹车、轮胎完整的组件。
轮胎的尺寸由它所承受的飞机重量确定,主轮胎约承受飞机总重的90%;前轮仅承受约10%的静载荷,但着陆时却要承受较大的动载荷。
如果飞机在未铺砌的粗糙跑道上使用,所需轮胎的直径和宽度应将计算值加大30%;前轮胎的尺寸可假定大致为主轮胎的60~100%;自行车式或四轮式起落架的前轮尺寸一般与主轮的相同;后三点式起落架的后轮胎尺寸大约为主轮胎的四分之一到三分之一。
对于最后的设计布局,实际使用的轮胎必须根据制造商的产品目录选择,选择的根据通常是承受计算得到的静载和动载额定值的最小轮胎。
3.2.4“起落架的家”
一个不合适的起落架收置位置可能损坏一个在其他方面是良好的设计方案;可能切断飞机结构(增加重量),减少内部油箱体积或产生附加的气动阻力。
收置到机翼上,要减少翼盒尺寸,从而会增加重量并可能减小油箱体积;收置到机身上或翼-身连接处,可能干扰纵梁;对高速飞机来说,这些布局在空气动力上的好处胜过超过重量的损失;实际上,所有民用喷气运输机都把起落架收置到机翼与机身的连接处。
起落架收放机构是基于“四连杆”原理,即用枢轴把三个元件联接起来(第四根杆是飞机结构)。在正常情况下,起落架支柱在收置前允许全伸长。虽然可以安装压缩支柱的装置,但仅适用于飞机内部空间绝对容纳不下全伸长支柱的情况。有时要求机轮在收上的位置平躺在轮舱内,这是相当简单并可在许多军机上见到的。
动漫实习生自我鉴定 篇6
几年的寒窗苦读让自我的专业知识得到提高,而毕业后的实习工作则是将专业知识进一步进化的过程。以下的一篇会计实习生自我鉴定资料,请参考。
会计作为一门应用性的科学,是一项重要的经济管理工作,是加强经济管理,提高经济效益的重要手段,经济管理离不开会计,经济越发展会计工作就显得越重要。透过次次学习,将学校所学的会计理论知识,熟悉了会计核算对象,利用真实的会计凭证对必须时期内的经济业务进行会计核算,认识并掌握了会计会计帐簿登记的基本原理。并且认识到了自我的优势与不足。同时,我也了解到会计电算化对会计工作的影响。
实习是每个学生务必拥有的一段经历,它使我们在实践中了解社会,让我们学到很多在课堂上根本学不到的知识,打开了视野,增长了见识,为我们以后进一步走向社会打下坚实的基础。而会计工作是指对具体事物进行计算、记录、收集有关数据资料,透过加工处理转化为用户决策有用的财务信息。掌握会计工作不仅仅要学好书本中的各种会计知识,而且还要认真用心地参加各种会计实习机会,让理论和实践有机务实的结合在一齐,只有这样才能成为一名高质量的会计专业人才。