高二数学教学工作计划2024(精选31篇)
2、用样本估计总体。通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。形成对数据处理过程进行初步评价的意识。
3、变量的相关性。通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
选修2-3,主要涉及三章内容:
第一章计数原理
计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。是学习排列、组合和概率理论的基础,也是培养学生数学思维能力的良好素材。
1、重视基本概念教学,正确区分分类与分步,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,并能应用两个原理解决问题,分类要做到不重不漏,分步要做到步骤完整。
2、在分析排列、组合应用题时,应充分利用列举法和树形图进行分析,让学生从直观,感性上理解问题,辨别排列与组合问题,总结规律,探究快捷解决问题的途径。
3、通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。的含义。
第二章随机变量及其分布列
学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差及内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念,观察、分析问题的意识。
1、随机观念贯穿于这部分内容的始终。首先要认识离散型随机变量的分布列对刻划随机现象的重要性;其次掌握超几何分布、二项分布是两个非常重要的应用广泛的概率模型。
2、通过实例,理解所有的概念,避免过分注重形式化的倾向。教学中不应简单从抽象的定义出发,机械地模仿,得出概念。重点是理解离散型随机变量及其分布列、均值、方差、正态分布的概念。
第三章统计案例
学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
1、教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。
2、教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路,类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。
3、回归分析注重步骤和过程,鼓励学生经历数据处理的全过程,要尽量使用统计图直观展示两个变量的关系,培养学生对数据的直观感觉,有条件的学校要利用统计软件画散点图、进而直观判断它们是否线性相关,然后在线性相关前提下尝试用线性回归模型来拟合,最后还通过相关指数和残差分析来判断拟合效果。
选修4-5,主要涉及一章内容:
第一章不等式
在本专题教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本专题给出的不等式大都有明确的几何背景。学生在学习中应该把握这些几何背景,理解这些不等式的实质。主要考察绝对值不等式的解法,这也是我们讲课的重点。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。
1.回顾和复习不等式的基本性质和基本不等式。
2.理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:
(1);
(2);
(3)会利用绝对值的几何意义求解以下类型的不等式:
三、教学任务
高二下学期的授课内容为必修3和选修2-3及选修4-5,必修3和选修2-3的前两章在期中考试前完成(约在5月1日前完成);选修2-3第三章及选修4-5在期末考试前完成(约在7月10日前完成)。
四、教学目标
提高数学设计探究性课堂教学设计的能力。建立一个充满生命活力的、开放的课堂教学运行机制,使教学设计真正适合学生发展的需要。建立中学数学探究性课堂教学设计的多元化评价机制。提高教师对探究性数学教学设计的评价能力掌握科学的评价方法,推动中学数学探究性课堂教学向前发展。
五、教法分析:
告知教学目标,讲述;板书或由问题引入等引起注意,激发兴趣。复习旧知识,提问;小测验等激活原有知识。呈现新知识,设计先行组织者、图表;教师讲授;指导学生自学;提供直观教材等选择性知觉新信息。
六、学情分析:
1、学习兴趣与基础
经过一段时间的观察和调查,我发现班上有一半学生对数学学习没有兴趣,问其原因,大部分都说数学太难,学不懂,老师讲的都不明白,基础太弱,导致课堂上无所事事。这样越来越对数学没有兴趣。
2、学习习惯
少部分学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,和老师讲常交流。但仍有大部分学生学习懒散、学习习惯差,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,
依赖同学的帮助,作业抄袭等等不良现象。
七、教学措施
1、加强基础知识教学。了解到学生目前的学习情况,大部分学生对初中的相关知识掌握不好,利用自习课或课余时间为他们补充初中知识的盲点,加强基础知识。同时在上课的时候,以基础简单题目为主,争取让大部分学生在课堂上有所收获。
2、加强合作学习。对于班级出现的两极分化情况,发动成绩好的学生带动基础薄弱的学生,促使大家共同进步。
八、教学进度安排
高二下学期
算法初步(必修3)9课时
概率(必修3)10课时
统计(必修3)8课时
计数原理(选修2-3)10课时
随机变量及其分布(选修2-3)15课时
统计案例(选修2-3)3课时
不等式(选修4-5)5课时
高二数学教学工作计划2024 篇18
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式: