az9范文网

您现在的位置是:首页 > 工作范文 > 工作计划范文

工作计划范文

初一下册期末复习计划范文(精选3篇)

2024-08-08 23:44:02工作计划范文打印
初一下册期末复习计划范文(精选3篇) 一、 重视知识的系统整合,引导学生构建知识网络。在课堂上以学生为主体,充分课发挥学生的主动性,老师主要起引导学生去整理已经学过的知识。....

  因此DOE=AOD=71

  注意:(1)题中有一个隐藏条件,就是COD=180,这是由直线AB、CD相交于点O得到的。

  (2)根据角平分线的定义与角的和、差来考虑,由OE平分AOD,可得AOE=DOE=AOD

  例题4:学校进行校际广播操比赛,体育老师是怎样整队的?

  1、全体立正,各排向前看齐,是为了什么?

  2、以某一排为基准,各排向左、向右看齐又是为了什么?

  3、以某一排为基准,各排成广播操队形散开(保持前后左右适当距离),这样的广播操队形整齐美观。为什么?

  分析与解:(1)各排向前看齐,使每排成为一条直线;

  (2)各排向左、向右看齐,使每一行成为一条直线;

  (3)保持左、右适当距离,使各排和各行所在直线互

  相平行,而且对角线上的所有同学所在队列也互相平行。

  注意:通过学生熟悉的亲身经历体验,感受几何美,同时能对理解“平行线”的概念有一定帮助。

  例题5:如图所示,过O点分别作CB、AD的垂线。

  分析与解:把三角尺的一边和AB重合,同时使另一边紧靠在O点上,沿这条边画直线就是AB的垂线,同理可以过O点作出CD的垂线。

  注意:在用三角尺作已知直线的垂线时,必须把三角尺的一边(理解为一条直线)和已知直线重合。

  例题6:我们对钟表再熟悉不过了,可是你是否注意过时钟、分针的相关位置所蕴含的数量关系呢?

  (1)分针每分钟转6°,时针每分钟转0.5°;

  (2)同一段时间内,分针所转的角度与时针所转的角度的比值等于12;由此,你能不能算出1点和2点之间,时针和分针什么时候重合?什么时候两针成90°的角呢?

  注意:有关钟表问题计算,可以利用上述(1)、(2)两个规律来解决。

  例题7:用七巧板拼图:

  (1)请用两副一样的七巧板拼出两个人见面互相行礼的图形,如下图(1)

  (2)请用三套一样的七巧板拼出两人打乒乓球的图形,如图(2)分析与解:对组成七巧板的各种图形的正确认识是解该题的关键。

  三、课时小结

  1、本章知识是在小学几何初步知识基础上,进一步对几何中的线段、射线、直线、角、平行线、垂线的含义进行研究,并结合生活常识给出了一些基本性质,使我们对几何基本图形有了更深刻的理解。

  2、通过本章学习不仅要求同学要养成动手操作的习惯,而且要培养数形结合的思想。

  四、课外作业

  第三单元

  (有理数及其运算)

  复习目标

  1、能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。

  2、能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。

  3、能运用有理数及其运算解决简单的实际问题。

  4、会用计算器进行加、减、乘、除、乘方计算和解决实际问题中的复杂计算。

  复习内容

  一、基础知识填空

  1.0既不是正数,也不是负数。

  2.整数和分数统称有理数。、

  4.规定了原点、正方向、单位长度的直线叫做数轴。

  5.只有符号不同的两个数,我们称其中一个数为另一个数的相反数。

  6.数轴上两个点表示的数,右边的数的总比左边的数的大;正数都大于0,都小于0,正数大于一切负数。

  7.在数轴上一个数所对应的点与原点距离叫做该数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;两个负数比较大小,绝对值大的反而小。

  8.有理数加法法则:同号两数相加,取加数的符号,并把绝对值相加,异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加仍得这个数。

  9.减去一个数,等于加上这个数的相反数。

  10.有理数乘法法则:两数相乘,同号得正,异号得负,任何数与0相乘,积为0

  11.乘积为1的两个有理数互为倒数

  12.求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂

  13.中,a叫做底数,n叫做指数

  14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号

  二、典型例题

  例题1:用号连接下列各数:,-2.5的相反数,-3.8,3,-4的绝对值

  分析与解:当多个有理数进行比较大小时

  ,往往借助数轴,利用右边的数比左边的数大来比较。可分别用字母表示各个数,再在数轴上表出字母对应的数。

  A:0B:-2.5的相反数C:-3.8D:3E:-4的绝对值

  所以-4的绝对值-2.5的相反数0-3.8

  注意:比较两个以上的数的大小可借助于数轴这一重要工具,把这5个数字用数轴上的点表示,从大到小的排序就自然完成了。

  例题2:把下列各数填在表示相应集合的大括号中

  正数集合:{┄},分数集合:{┄}

  负整数集合:{┄},非负数集合:{┄}

  自然数集合:{┄},有理数集合:{┄}

  分析与解:明确非负数,自然数、负整数和有理数等概念,是解决问题的关键,非负数包括0和正数,自然数包括0和正整数,题中的小数可以当作分数对待。

  注意:各个集合之间的区别与联系,务必弄得清清楚楚,才能保证集合中的数准确无误。

  例题3:计算:

  分析与解:本题可先把加减混合运算统一成加法,再写成简化的代数式,然后利用运算律简化运算。

  注意:应用加法交换律、结合律时一定要注意每个数的性质符号不能改变,根据问题特点,灵活选择合适的解法是解题关键。

  例题4:计算

  分析与解:将题中的除法运算转化为乘法运算以后,可发现本题能利用乘法的运算性质简化运算。

  注意:对于计算题,应仔细观察题目的特点,尽量使用简便方法。

  例题5:计算(-0.25)20--×42004的值

  分析与解:当发现一个题算起来比较麻烦时,我们就应该细观察,多动脑,尽可能找出简便的方法来此题若直接求(-0.25)20--和42004比较难,但细观察可以发现这就是提醒我们利用乘法交换律和结合律,就比较容易求出结果16。

  第四单元

  (字母表示数)

  复习目标

  1、进一步经历探索事物之间的数量关系,并能用字母与代数式表示出来。

  2、理解用字母表示数的意义和代数式的含义,会分析和解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系。

  3、掌握合并同类项和去括号的法则,会进行计算。

  4、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律。

  复习内容:

  一、基础知识填空

  1、用运算符号把数或表示数的字母连接而成的式子叫做_代数式;单独一个数或一个字母也是_代数式。

  2、在代数式中,字母前的数字因数叫做它的_系数______。

  3、所含_字母_相同,并且相同_字母的指数__也相同的

  项叫做同类项,把同类项合并成一项就叫做_合并同类项_.

  4、合并同类项法则:__把同类项的系数相加,字母和字母的指数不变。

  5、去括号法则:__括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“—”号,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变

  二、典型例题

  例题1:用字母表示下面实际问题:

  (1)长方体的长、宽、高分别为a、b、c,那么长方体的体积是多少?表面积是多少?

  (2)某服装标价为a元,按八折优惠出售,那么出售价是多少元?

  (3)下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n1)盆花,每个图案花盆的总数是S。按此规律,推出S与n的关系。

  分析与解:(1)由长方体体积公式=长×宽×高,表面积=六个小面积的和,可得长方体体积是abc,表面积是2(ab+bc+ac);(2)所谓的八折指得是按标价的百分之八十出售,因此出售价是0.8a元;(3)由于每条边上都是n盆花,这样三条边上花盆的总和为3n,其中重复地计算了顶点上的花盆数,因此,花盆总数应为3n-3。因此当n=2时,花盆总数是2×3-3=3;

  当n=3时,花盆总数是3×3-3=6;

  当n=4时,花盆总数是4×3-3=9;

  …

  当每条边有n个花盆时,花盆总数S=3n-3

  注意:(1)用含有字母的式子表示实际问题时,必须弄清楚实际问题中的数量关系;

文章评论