az9范文网

您现在的位置是:首页 > 工作范文 > 工作计划范文

工作计划范文

初二数学教学计划范文(通用30篇)

2024-08-30 00:42:15工作计划范文打印
初二数学教学计划范文(通用30篇) 一、 指导思想:以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据 、进行计算、推理 和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思....

  第十三章轴对称

  本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键:突出分析问题的思维方式。第十四章、整式的乘除与因式分解

  本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。

  第十五章、分式

初二数学教学计划范文 篇10

  本学期我担任二年五班和二年六班的教学任务,现教学工作计划如下:

  一、教学目标

  1、面向全体学生,促进学生全面和谐与主动的发展,三维目标有机整合,保证学生身心健康成长,尊重学生的主体地位,调动学生的积极性。

  2、激发学生学习兴趣,培养学生严谨的态度,培养学生的好习惯。

  3、发展善于合作,勤于思考,爱于学习的科学精神,并锻炼学生自学能力。

  4、培养学生爱国情感,团结合作能力。

  5、锻炼学生发现问题、分析问题、解决问题的能力,锻炼学生动手能力。

  二、教学资源分析

  本学期的教学内容分为五章,分别是第十六章 分式、第十七章 反比例函数、第十八章勾股定理、第十九章 四边形与第二十章 数据的分析。

  其中教学任务的重点是了解分式的基本性质,掌握有关分式的四则运算法则,会用一元一次分式方程解决实际问题;理解反比例函数的概念,会画反比例函数的图象,会求反比例函数的解析式,能利用函数性质解决一些简单的实际问题;会用定理解决简单问题,会用勾股定理的逆定理判定直角三角形;掌握平等四边形、矩形、菱形、正方形、梯形的概念,掌握特殊四边形的有关性质和判定方法;理解平均数、中位数和众数等统计量的统计意义,会算权平均数、极差和方差,会用样本平均数、方差估计总体的平均数方差。

  教学资源除了教材、教师用书,还可以充分利用集体备课、网络资源、多媒体资源等。另外,学生也可以利用身边的生活用品制作具,这也锻炼了学生的动手能力及观察能力。

  三、学生基本情况分析

  五、六班学生大多数可以做到课上认真学习,课后完成作业,通过小组合作的形式完成教学内容,但仍有一小部分学生上课溜号或搞小动作,注意力不集中,作业不认真完成,没有学习气氛。

  四、教学方法设计

  1、在教学设计中,要让学生参与学习,主动学习,锻炼学生自学能力。利用分组加分的方法激发学生的积极性。

  2、检查学生的预习情况,适当加分扣分,培养学生认真预习的习惯;上课充分利用好学生的好胜心理,让学生上前台讲解,其他学生补充改正,培养学生认真听讲、认真阅读思考、大胆发言、记笔记的好习惯。

  3、认真设计课前引言、课中引导用语,培养学生发现问题的习惯。

  4、严格要求学生的书写习惯,培养学生认真审题、检验改错的好习惯。

  5、充分利用好学校提供的教学教具,例如:挂图、多媒体、网络,及即将安装的“班班通”。

初二数学教学计划范文 篇11

  教学目标:

  (一)教学知识点

  1.了解立方根的概念,会用根号表示一个数的立方根.

  2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.

  3.了解立方根的性质.

  4.区分立方根与平方根的不同.

  (二)能力训练要求

  1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.

  2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.

  (三)情感与价值观要求

  当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.

  教学重点:

  立方根的概念.

  教学难点:

  1.正确理解立方根的概念.

  2.会求一个数的立方根.

  3.区分立方根与平方根的不同之处.

  教学方法:

  类比学习法.

  教学过程:

  Ⅰ.新课导入

  上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=± .

  若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?

  Ⅱ.新课讲解

  1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?

  .若x的平方等于a,则x叫a的平方根,记作x=± ,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=± ,读作x等于正、负三次根号a,简称x等于正、负根号a.

  [师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.

  [生甲]我认为这位同学回答得不对.如果x2=a,则x=± ,x3=a时,x=± 也成立的话,那如何区分平方根与立方根呢?

  [生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.

  [师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x= ,读作x等于三次根号a.

  开立方的定义

  [师]大家先回忆开平方的定义,再类推开立方的定义.

  [生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.

  (2)立方根的性质

  [师]2的立方等于多少?是否有其他的数,它的立方也是8?

  [生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.

  [师]-3的立方等于多少?是否有其他的数,它的立方也是-27?

  [生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.

  [师]0的立方等于多少?0有几个立方根?

  [生]0的立方等于0,0有1个立方根是0.

  [师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?

  [生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.

  [师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.

  (3)平方根与立方根的区别与联系.

  [师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.

  [生]从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.

  [生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.

初二数学教学计划范文 篇12

  新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:

  一、学情分析

  本学期我继续担任初二的数学教学工作。这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。

  二、教学措施

  1、认真研读新课程标准,钻研教材,努力构建和谐课堂教学模式,提高教学的实效性与有效性

  2、根据教学内容,精心设计数学活动,培养学生探究合作能力,通过变式训练,培养思维的灵活性。特别是函数一章,利用数形结合,努力培养学生数学建模的思想和能力,

文章评论