2024高中数学教学计划(精选33篇)
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
2024高中数学教学计划 篇24
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力、
教学重点和难点
重点:四种命题之间的关系;难点:反证法的运用、
教学过程设计
第一课时:四种命题
一、导入新课
【练习】1、把下列命题改写成“若p则q”的形式:
(l)同位角相等,两直线平行;
(2)正方形的四条边相等、
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论、
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题、
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”、
值得指出的是原命题和逆命题是相对的、我们也可以把逆命题当成原命题,去求它的.逆命题、
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等、
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础、
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题、
【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等、
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题、把其中一个命题叫做原命题,另一个命题叫做原命题的否命题、
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定、
【板书】原命题:若p则q;
否命题:若┐p则q┐、
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真、
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真、
由此可以得原命题真,它的否命题不一定真、
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性、
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题、
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形、
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题、把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题、
原命题是“若p则q”,则逆否命题为“若┐q则┐p、
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真、
原命题真,逆否命题也真、
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】1、原命题为真,它的逆命题不一定为真、
2、原命题为真,它的否命题不一定为真、
3、原命题为真,它的逆否命题一定为真、
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性、
教师活动:
三、课堂练习
1、若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?
学生活动:笔答
教师活动:
2、根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?
学生活动:讨论后回答
设计意图:
通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系、
教师活动:
2024高中数学教学计划 篇25
指导思想与总目标:
根据学校相关处室、教研组、年级组要求,高一数学备课组以提升学生学习质量、养成良好的数学学习习惯为核心,以提高课堂教学效益为重点。本组8位教师加强群众研讨,团结和谐、相互交流、相互学习,配合教研组用心推进“五步导学”课题研究,落实教学的各个环节为基本要求,努力提高教师研修水平和业务潜力。确保期末团体平均分位居万州区同级学校前4名。
一、教学资料
本学期将完成“《数学①》必修”和“《数学④》必修”(人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求
(一)前半期完成《数学①》主要涉及三章资料: